The Periodic Table of the Elements


It is not difficult to find periodic tables of the chemical elements. What is provided here, however, is a table with information drawn from different sources that may not always be found together (though there is the massive Handbook of Chemistry and Physics, edited by Robert C. Weast and Melvin J. Astle, of which I have the 62nd edition, 1981-1982, CRC Press, Inc. -- and now the 88th Edition, CRC Handbook of Chemistry and Physics, 2007-2008, Editor-in-Chief David R. Lide, Ph.D.). Thus, atomic isotopes, half-lives, and decay modes are largely taken from Subatomic Physics, by Hans Frauenfelder and Ernest M. Henley (Prentice-Hall, Inc. 1974). Cosmic abundance of elements is taken from the Realm of the Universe, by George O. Abell (Holt, Rinehart, and Winston, Inc. 1976 -- Abell's catalogue of galaxy clusters has now enshrined his name to the far reaches of the universe). Some minerological information comes from An Introduction to Minerology for Geologists, by W.J. Phillips and N. Phillips (John Wiley & Sons, 1980), and the Manual of Minerology by Cornelius S. Hurlbut, Jr. and Cornelis Klein (John Wiley & Sons, 1977). Such an attempt at a comprehensive picture of the elements in nuclear, chemical, and minerological forms I have also found in a couple of laminated, single-sheet periodic tables published for students, the "Chemical Periodic Table," edited by C. Bello (Papertech Marketing Group, Inc., 1988), and especially the "Table of Periodic Properties of the Elements," by the Sargent-Welsh Scientific Company (1980), from which some information here is derived -- now especially the neutral atomic radii. In some respects those single-sheet tables are more comprehensive than the following.

In 2003 I updated some of the data here from Nature's Building Blocks, An A-Z Guide to the Elements by John Emsley [Oxford, 2001]. Emsley, unfortunately, doesn't exhaustively give things like isotopes and decay modes. I don't know why one would want to publish a book on the elements without such things. A nice new treatment of the elements, with a wealth of information, unfortunately often in a cryptic graphic form, is The Elements, A Visual Exploration of Every Known Atom in the Universe, by Theodore Gray (Black Dog & Leventhal Publishers, Inc., New York, 2009).

Many of the sources above may seem somewhat out of date, but they reflect the period when I was studying these matters, and when I was especially intrigued to supplement a chemical view of the elements with a picture of the variety of nuclear isotopes. This table is not intended, therefore, as a resource for chemistry, physics, or minerology students. It is a resource for philosophy of science, illustrating basic ideas and information, where the most up to date data and the provision of all chemically useful information is not necessary:  Data for reflection and theory, not for application and experiment.

A few atoms of every element up to 118 have now been observed, but the highest ones exist too briefly for much information to be gleaned about them -- so far. Physicists still hope for an "island of stablity," were more long lived atoms will be found. Originally it was thought that might occur around 114; but the actual 114 has disappointed. Now hopes rest on 120 or 122.

IA Alkali MetalsLi 3Na 11K 19Rb 37Cs 55Fr 87
IIA Alkali EarthsBe 4Mg 12Ca 20Sr 38Ba 56Ra 88
Rare Earths
Transition MetalsIIIBSc 21Y 39Lu 71Lr 103La 57Ac 89
IVBTi 22Zr 40Hf 72Rf 104Ce 58Th 90
VBV 23Nb 41Ta 73Db 105Pr 59Pa 91
VIBCr 24Mo 42W 74Sg 106Nd 60U 92
VIIBMn 25Tc 43Re 75Bh 107Pm 61Np 93
VIIIBFe 26Ru 44Os 76Hs 108Sm 62Pu 94
Co 27Rh 45Ir 77Mt 109Eu 63Am 95
Ni 28Pd 46Pt 78Ds 110Gd 64Cm 96
IBCu 29Ag 47Au 79Rg 111Tb 65Bk 97
IIBZn 30Cd 48Hg 80Cn 112Dy 66Cf 98
IIIA Boron FamilyB 5Al 13Ga 31In 49Tl 81Uut 113Ho 67Es 99
IVA Carbon FamilyC 6Si 14Ge 32Sn 50Pb 82Uuq 114Er 68Fm 100
VA Nitrogen FamilyN 7P 15As 33Sb 51Bi 83Uup 115Tm 69Md 101
VIA Oxygen FamilyO 8S 16Se 34Te 52Po 84Uuh 116Yb 70No 102
VIIA HalogensH 1F 9Cl 17Br 35I 53At 85Uus 117
VIIIA Inert GasesHe 2Ne 10Ar 18Kr 36Xe 54Rn 86Uuo 118

Standard Entry:
Z=atomic number: symbol
Name of Element
atomic weight in grams/mole
melting/boiling point, oC
{electrons in shells}
electronegativity/crystal structure
Atoms & Ions=radius in Angstroms ()
[cosmic abundance/1012 Hydrogen atoms]
A/B=mass number of isotope, spin & parity
relative isotope abundance (%)
T=half life    decay mode
(date of discovery)

Z=0: n
neutron
{0}
n=c.10-5
[*]
B=1 1/2+
T=15.3m
Z=1: H
Hydrogen
1.008g
-259.34/-252.88
{1}
2.20/hcp
H=0.79
H+=c.10-5
[1x1012]
A=1 1/2+
99.985%
Deuterium
A=2 1+
0.015%
Tritium
B=3 1/2+
T=12.33y
(1766)

Alkali Metals

Standard Entry:
Z=atomic number: symbol
Name of Element
atomic weight in grams/mole
melting/boiling point, oC
{electrons in shells}
electronegativity/crystal structure
Atoms & Ions=radius in Angstroms ()
[cosmic abundance/1012 Hydrogen atoms]
A/B=mass number of isotope, spin & parity
relative isotope abundance (%)
T=half life    decay mode
(date of discovery)

Z=3: Li
Lithium
6.941g
180.6/1342
{2 1}
0.98/bcc
Li=2.05
Li+=0.68
[<3]
A=6 1+
7.5%
A=7 3/2-
92.5%
(1817)
11: Na
Sodium
22.989768g
97.8/883
{2 8 1}
0.93/bcc
Na=2.23
Na+=0.97
[1.9x106]
B=22
T=2.602y EC
A=23 3/2+
100%
B=24
T=15.02h
(1807)
19: K
Potassium
39.0983g
63.71/759
{2 8 8 1}
0.82/bcc
K=2.77
K+=1.33
[120x103]
A=31 1/2+
100%
B=40 /EC
T=1.28Gy
B=42
T=12.36h
(1807)
37: Rb
Rubidium
85.4678g
39.48/688
{2 8 18 8 1}
0.82/bcc
Rb=2.98
Rb+=1.47
[410]
A=85 5/2-
72.17%
B=86
T=18.7d
A=87 3/2-
27.83%
T=50Gy
(1861)
55: Cs
Cesium
132.90543g
28.39/671
{2 8 18 18 8 1}
0.79/bcc
Cs=3.34
Cs+=1.67
[16]
A=133 7/2+
100%
B=134
T=2.06y
B=135 7/2+
T=2.8My
B=137
T=30.17y
(1860)
87: Fr
Francium
(233.0197)
27/677
{2 8 18 32 18 8 1}
0.7/bcc
Fr+=1.80
B=212
T=19.3m EC
B=222
T=15m
A=223 3/2+
T=22m
(1939)

Alkali Earths

Standard Entry:
Z=atomic number: symbol
Name of Element
atomic weight in grams/mole
melting/boiling point, oC
{electrons in shells}
electronegativity/crystal structure
Atoms & Ions=radius in Angstroms ()
[cosmic abundance/1012 Hydrogen atoms]
A/B=mass number of isotope, spin & parity
relative isotope abundance (%)
T=half life    decay mode
(date of discovery)

4: Be
Berylium
9.012182g
1289/2472
{2 2}
1.57/hcp
Be=1.40
Be+2=0.35
[12]
B=7
T=53.3d EC
A=9 3/2-
100%
B=10 0+
T=2.7My
(1798)
12: Mg
Magnesium
24.3050g
648.8/1089.8
{2 8 2}
1.31/hcp
Mg=1.72
Mg+2=0.66
[32x106]
A=24 0+
78.99%
A=25 5/2+
10%
A=26 0+
11.01%
B=28
T=20.9h
(1775)
20: Ca
Calcium
40.078g
842/1494
{2 8 8 2}
1.00/fcc
Ca=2.23
Ca+2=0.99
[2.5x106]
A=40 0+
96.94%
B=41 7/2-
T=80ky
A=42 0+
0.65%
A=43 7/2-
0.14%
A=44 0+
2.08%
B=45
T=165d
A=46 0+
0.003%
A=48 0+
0.19%
(1808)
38: Sr
Strontium
87.62g
769/1382
{2 8 18 8 2}
0.95/fcc
Sr=2.45
Sr+2=1.12
[760]
A=84 0+
0.56%
A=86 0+
9.9%
A=87 9/2+
7%
A=88 0+
82.6%
B=90 0+
T=28.9y
(1790)
56: Ba
Barium
137.327g
729/1805
{2 8 18 18 8 2}
0.89/bcc
Ba=2.78
Ba+2=1.34
[130]
A=130 0+
0.1%
A=132 0+
0.095%
A=134 0+
2.4%
A=135 3/2+
6.5%
A=136 0+
7.8%
A=137 3/2+
11.2%
A=138 0+
71.9%
B=140
T=12.8d
(1808)
88: Ra
Radium
226.0254g
700/1536
{2 8 18 32 18 8 2}
0.9/bcc
Ra+2=1.43
A=226 0+
T=1600y
B=228 0+
T=5.75y
(1898)

Transition Metals

Standard Entry:
Z=atomic number: symbol
Name of Element
atomic weight in grams/mole
melting/boiling point, oC
{electrons in shells}
electronegativity/crystal structure
Atoms & Ions=radius in Angstroms ()
[cosmic abundance/1012 Hydrogen atoms]
A/B=mass number of isotope, spin & parity
relative isotope abundance (%)
T=half life    decay mode
(date of discovery)

21: Sc
Scandium
44.9559g
1541/2831
{2 8 9 2}
1.36/hcp
Sc=2.09
Sc+3=0.81
[1.1x103]
A=45 7/2-
100%
B=46
T=83.8d
(1879)
39: Y
Yttrium
88.9059g
1522/3338
{2 8 18 9 2}
1.22/hcp
Y=2.27
Y+3=0.92
[210]
B=88
T=106.6d EC
A=89 1/2-
100%
(1794)
71: Lu
Lutetium
174.97g
1663/3395
{2 8 18 32 9 2}
1.27/hcp
Lu=2.25
Lu+3=0.85
[7]
A=175 7/2+
97.4%
A=176 7-
2.6%
T=37Gy
(1907)
103: Lr
Lawrencium
(260.105)
(1627)/--
{2 8 18 32 32 9 2}
B=256
T=35s
B=260
T=3m
(1961)
22: Ti
Titanium
47.90g
1670/3289
{2 8 10 2}
1.54/hcp
Ti=2.00
Ti+3=0.76
Ti+4=0.68
[56x103]
A=46 0+
8%
A=47 5/2-
7.5%
A=48 0+
73.7%
A=49 7/2-
5.5%
A=50 0+
5.3%
(1791)
40: Zr
Zirconium
91.22g
1855/4409
{2 8 18 10 2}
1.33/hcp
Zr=2.16
Zr+4=0.79
[600]
A=90 0+
51.4%
A=91 5/2+
11.2%
A=92 0+
17.1%
B=93 5/2+
T=950ky
A=94 0+
17.5%
B=95
T=64d
A=96 0+
2.8%
(1789)
72: Hf
Hafnium
178.49g
2231/4603
{2 8 18 32 10 2}
1.3/hcp
Hf=2.16
Hf+4=0.78
[8]
A=174 0+
0.18%
T=2Py
A=176 0+
5.2%
A=177 7/2-
18.5%
A=178 0+
27.2%
A=179 9/2+
13.8%
A=180 0+
35.1%
B=182 0+
T=9My
(1923)
104: Rf
Rutherfordium
(261.11)
{2 8 18 32 32 10 2}
B=257
T=4.5s
B=261
T=65s
23: V
Vanadium
50.9414g
1910/3409
{2 8 11 2}
1.63/bcc
V=1.92
V+2=0.88
V+3=0.74
V+4=0.63
V+5=0.59
[10x103]
A=50 6+
0.25%
T=40Py
A=51 7/2-
99.75%
(1830)
41: Nb
Niobium
92.9064g
2469/4744
{2 8 18 12 1}
1.6/bcc
Nb=2.08
Nb+4=0.74
Nb+5=0.69
[200]
B=91 9/2+
T=LONG
B=92 7+
T=20My
A=93 9/2+
100%
B=94 6+
T=20ky
B=95
T=35.15d
(1801)
73: Ta
Tantalum
180.9479g
3020/5458
{2 8 18 32 11 2}
1.5/bcc
Ta=2.09
Ta+5=0.68
[1]
A=180 8+
0.012%
A=181 7/2+
99.988%
B=182
T=115d
(1802)
105: Db
Dubnium
(262.114)
{2 8 18 32 32 11 2}
B=262
T=40s
24: Cr
Chromium
51.996g
1863/2672
{2 8 13 1}
1.66/bcc
Cr=1.85
Cr+3=0.63
Cr+6=0.52
[690x103]
A=50 0+
4.35%
B=51
T=27.7d EC
A=52 0+
83.79%
A=53 3/2-
9.5%
A=54 0+
2.36%
(1797)
42: Mo
Molybdenum
95.94g
2623/4639
{2 8 18 13 1}
2.16/bcc
Mo=2.01
Mo+4=0.70
Mo+6=0.62
[150]
A=92 0+
14.8%
B=93 5/2+
T=3ky
A=94 0+
9.1%
A=95 5/2+
15.9%
A=96 0+
16.7%
A=97 5/2+
9.5%
A=98 0+
24.4%
B=99
T=66.02h
A=100 0+
9.6%
(1778)
74: W
Tungsten
183.85g
3422/5730
{2 8 18 32 12 2}
2.36/bcc
W=2.02
W+4=0.70
W+6=0.62
[300]
A=180 0+
0.13%
B=181
T=140d EC
A=182 0+
26.3%
A=183 1/2-
14.3%
A=184 0+
30.7%
B=185
T=75.1d
A=186 0+
28.6%
B=188
T=69d
(1783)
106: Sg
Seaborgium
(263.118)
{2 8 18 32 32 12 2}
B=263
T=0.9s
B=266
T=21s
25: Mn
Manganese
54.9380g
1246/2062
{2 8 13 2}
1.55/cub
Mn=1.79
Mn+2=0.80
Mn+3=0.66
Mn+4=0.60
Mn+7=0.46
[260x103]
A=53 7/2-
T=11My EC
A=54
T=313d EC
A=55 5/2-
100%
B=56
T=2.58h
(1774)
43: Tc
Technetium
98.9062g
2204/4265
{2 8 18 14 1}
1.9/hcp
Tc=1.95
Tc+7=0.56
A=97 9/2+
T=2.6My EC
B=98 7 6+
T=1.5My
B=99 9/2+
T=210ky
(1937)
75: Re
Rhenium
186.2g
3186/5596
{2 8 18 32 13 2}
1.9/hcp
Re=1.97
Re+4=0.72
Re+7=0.56
[2]
A=185 5/2+
37.5%
A=187 5/2+
62.5%
T=50Gy
(1925)
107: Bh
Bohrium
(262.12)
{2 8 18 32 32 13 2}
B=267
T=17s
26: Fe
Iron
55.847g
1538/2862
{2 8 14 2}
1.83/bcc
Fe=1.72
Fe+2=0.74
Fe+3=0.64
[25x106]
A=54 0+
5.8%
A=56 0+
91.7%
A=57 1/2-
2.14%
A=58 0+
0.31%
B=59
T=44.6d
A=60 0+
T=100ky
(ancient)
44: Ru
Ruthenium
101.07g
2334/4150
{2 8 18 15 1}
2.2/hcp
Ru=1.89
Ru+4=0.67
[66]
A=96 0+
5.5%
A=98 0+
1.9%
A=99 5/2+
12.7%
A=100 0+
12.6%
A=101 5/2+
17.1%
A=102 0+
31.6%
A=104 0+
18.6%
B=106
T=367d
(1844)
76: Os
Osmium
190.2g
3033/5012
{2 8 18 32 14 2}
2.2/hcp
Os=1.92
Os+6=0.69
[6]
A=184 0+
0.02%
A=186 0+
1.6%
A=187 1/2-
1.6%
A=188 0+
13.3%
A=189 3/2-
16.1%
A=190 0+
26.4%
A=192 0+
41.0%
B=194
T=6y
(1804)
108 Hs
Hassium
{2 8 18 32 32 14 2}
B=273
T=20s
27: Co
Cobalt
58.9332g
1495/2928
{2 8 15 2}
1.88/fcc
Co=1.67
Co+2=0.72
Co+3=0.63
[32x103]
B=56
T=78.8d EC
B=57
T=270d EC
B=58
T=71.3d EC
A=59 7/2-
100%
A=60
T=5.27y
(1735)
45: Rh
Rhodium
102.9055g
1963/3697
{2 8 18 16 1}
2.28/fcc
Rh=1.83
Rh+3=0.68
[26]
B=101
T=3.3y EC
A=103 1/2-
100%
(1803)
77: Ir
Iridium
192.2g
2447/4428
{2 8 18 32 15 2}
2.20/fcc
Ir=1.87
Ir+4=0.68
[160]
A=191 3/2+
37.4%
B=192
T=74.2d EC
A=193 3/2+
62.6%
(1804)
109 Mt
Meitnerium
{2 8 18 32 32 15 2}
B=268
T=0.07s
28: Ni
Nickel
58.71g
1455/2914
{2 8 16 2}
1.91/fcc
Ni=1.62
Ni+2=0.69
[2.1x106]
B=57
T=36h EC
A=58 0+
68%
B=59 3/2-
T=80ky EC
A=60 0+
26.1%
A=61 3/2-
1.1%
A=62 0+
3.6%
B=63
T=92y
A=64 0+
0.9%
(1751)
46: Pd
Palladium
106.4g
1555/2964
{2 8 18 18}
2.20/fcc
Pd=1.79
Pd+2=0.80
Pd+4=0.65
[20]
A=102 0+
1%
B=103
T=17d EC
A=104 0+
11%
A=105 5/2+
22.2%
A=106 0+
27.3%
B=107 5/2+
T=6.5My
A=108 0+
26.7%
A=110 0+
11.8%
(1803)
78: Pt
Platinum
195.09g
1769.0/3827
{2 8 18 32 16 2}
2.28/fcc
Pt=1.83
Pt+2=0.80
Pt+4=0.65
[100]
A=190 0+
0.013%
T=700Gy
A=192 0+
0.78%
A=194 0+
32.9%
A=195 1/2-
33.8%
A=196 0+
25.3%
A=198 0+
7.2%
(16 cent.)
110: Ds
Darmstadtium
A=281
T=1.6m
29: Cu
Copper
63.546g
1085/2563
{2 8 18 1}
1.90/fcc
Cu=1.57
Cu+=0.96
Cu+2=0.72
[11x103]
A=63 3/2-
69.1%
B=64 / EC
T=12.7h
A=65 3/2-
30.9%
B=67
T=61.88h
(ancient)
47: Ag
Silver
107.868g
961.93/2163
{2 8 18 18 1}
1.93/fcc
Ag=1.75
Ag+=1.26
Ag+2=0.89
[7]
A=107 1/2-
51.83%
B=108
T=127y EC
A=109 1/2-
48.17%
B=110
T=252d
B=111
T=7.45d
(ancient)
79: Au
Gold
196.9665g
1064.43/2857
{2 8 18 32 18 1}
2.54/fcc
Au=1.79
Au+=1.37
Au+3=0.85
[5]
B=195
T=183d EC
B=196
T=6.18d EC
A=197 3/2+
100%
B=198
T=2.696d
B=199
T=3.15d
(ancient)
111: Rg
Roentgenium
B=272
T=1.5ms
30: Zn
Zinc
63.37g
419.58/907
{2 8 18 2}
1.65/hcp
Zn=1.53
Zn+2=0.74
[28x103]
A=64 0+
48.9%
B=65
T=244.1d EC
A=66 0+
27.8%
A=67 5/2-
4.1%
A=68 0+
18.6%
A=70 0+
0.62%
(16th cent)
48: Cd
Cadmium
112.40g
321.108/767
{2 8 18 18 2}
1.69/hcp
Cd=1.71
Cd+2=0.97
[72]
A=106 0+
1.2%
A=108 0+
0.9%
B=109
T=453d EC
A=110 0+
12.4%
A=111 1/2+
12.8%
A=112 0+
24.0%
A=113 1/2+
12.3%
A=114 0+
28.8%
A=116 0+
7.6%
(1817)
80: Hg
Mercury
200.59g
-38.836/356.66
{2 8 18 32 18 2}
2.00/rhm
Hg=1.76
Hg+2=1.10
[<100]
A=196 0+
0.15%
A=198 0+
10.1%
A=199 1/2-
16.9%
A=200 0+
23.1%
A=201 3/2-
13.2%
A=202 0+
29.7%
B=203
T=46.8d
A=204 0+
6.8%
(ancient)
112: Cn
Copernicium
A=285
T=0.28ms
{2, 8, 18, 32, 32, 18, 2}

Boron Family

Standard Entry:
Z=atomic number: symbol
Name of Element
atomic weight in grams/mole
melting/boiling point, oC
{electrons in shells}
electronegativity/crystal structure
Atoms & Ions=radius in Angstroms ()
[cosmic abundance/1012 Hydrogen atoms]
A/B=mass number of isotope, spin & parity
relative isotope abundance (%)
T=half life    decay mode
(date of discovery)

5: B
Boron
10.81g
2092/4002
{2 3}
2.04/tet
B=1.17
B+=0.23
[<160]
A=10 3+
19.8%
A=11 3/2-
80.2%
(1808)
13: Al
Aluminum
26.981
660.452/2520
{2 8 3}
1.61/fcc
Al=1.82
Al+3=0.51
[3.3x106]
B=26 5+ /EC
T=740ky
A=27 5/2+
100%
(1827)
31: Ga
Gallium
69.72g
29.7741/2205
{2 8 18 3}
1.81/orh
Ga=1.81
Ga+2=0.62
[630]
A=67
T=78.2h EC
A=69 3/2-
60.2%
A=71 3/2-
40%
B=72
T=14.1h
(1875)
49: In
Indium
114.82g
156.634/2073
{2 8 18 18 3}
1.78/tet
In=2.00
In+3=0.81
[40]
A=113 9/2+
4.3%
B=114
T=49.51d IT
A=115 9/2+
95.7%
T=500Ty
(1863)
81: Tl
Thallium
204.37g
304/1473
{2 8 18 32 18 3}
2.04/hcp
Tl=2.08
Tl+=1.47
Tl+3=0.95
[8]
A=203 1/2+
29.5%
B=204
T=3.77y
A=205 1/2+
70.5%
(1861)
113: Uut
Ununtrium
detected
summer of 2003
(2003)

Carbon Family

Standard Entry:
Z=atomic number: symbol
Name of Element
atomic weight in grams/mole
melting/boiling point, oC
{electrons in shells}
electronegativity/crystal structure
Atoms & Ions=radius in Angstroms ()
[cosmic abundance/1012 Hydrogen atoms]
A/B=mass number of isotope, spin & parity
relative isotope abundance (%)
T=half life    decay mode
(date of discovery)

6: C
Carbon
12.011g
3826/3827
{2 4}
2.55/hex
C=0.91
C+4=0.16
[420x106]
B=11
T=20.4m
A=12 0+
98.892%
A=13 1/2-
1.108%
B=14 0+
T=5692y
(ancient)
14: Si
Silicon
28.0855g
1414/3267
{2 8 4}
1.90/fcc
Si-4=1.98
Si=1.46
Si+4=0.39
[40x106]
A=28 0+
92.2%
A=29 1/2+
4.7%
A=30 0+
3.1%
(1823)
32: Ge
Germanium
72.59g
938.3/2834
{2 8 18 4}
2.01/fcc
Ge=1.52
Ge+2=0.73
Ge+4=0.53
[3.2x103]
B=68
T=275d EC
A=70 0+
20.7%
A=72 0+
27.5%
A=73 9/2+
7.7%
A=74 0+
36.4%
A=76 0+
7.7%
(1886)
50: Sn
Tin
118.69g
231.9681/2603
{2 8 18 18 4}
1.96/fcc
Sn-4=2.15
Sn=1.72
Sn+2=0.93
Sn+4=0.71
[25]
A=112 0+
1.0%
A=114 0+
0.66%
A=115 1/2+
0.35%
A=116 0+
14.4%
A=117 1/2+
7.6%
A=118 0+
24.1%
A=119 1/2+
8.6%
A=120 0+
32.8%
B=121
T=76y
A=122 0+
4.7%
A=124 0+
5.8%
B=126 0+
T=100ky
(ancient)
82: Pb
Lead
207.2g
327.502/1750
{2 8 18 32 18 4}
2.33/fcc
Pb=1.81
Pb+2=1.20
Pb+4=0.84
[71]
B=202 0+
T=300ky EC
A=204 0+
1.4%
T=140Py
B=205 5/2-
T=14My EC
A=206 0+
24.1%
A=207 1/2-
22.1%
A=208 0+
52.4%
A=210 0+
22.3%
T=22.3y
(ancient)
114: Uuq
Ununquadium
B=289
T=30.4s

Nitrogen Family

Standard Entry:
Z=atomic number: symbol
Name of Element
atomic weight in grams/mole
melting/boiling point, oC
{electrons in shells}
electronegativity/crystal structure
Atoms & Ions=radius in Angstroms ()
[cosmic abundance/1012 Hydrogen atoms]
A/B=mass number of isotope, spin & parity
relative isotope abundance (%)
T=half life    decay mode
(date of discovery)

7: N
Nitrogen
14.0067g
-210.0042/-195.80
{2 5}
3.04/hex
N=0.75
N+3=0.16
N+5=0.13
[87x106]
A=14 1+
99.64%
A=15 1/2-
0.36%
(1772)
15: P
Phosphorus
30.9738g
44.14/277
{2 8 5}
2.19/cub
P=1.23
P+3=0.44
P+5=0.35
[390x103]
A=31 1/2+
100%
B=32
T=14.26d
(1669)
33: As
Arsenic
74.9216g
603/603
{2 8 18 5}
2.18/rhm
As=1.33
As+3=0.58
As+5=0.46
[260]
B=73
T=80.3d EC
B=74
T=17.9d EC
A=75 3/2-
100%
(c.1250)
51: Sb
Antimony
121.75g
630.755/1587
{2 8 18 18 5}
2.05/rhm
Sb=1.53
Sb+3=0.76
Sb+5=0.62
[8]
A=121 5/2+
57.3%
A=123 7/2+
42.7%
B=124
T=60.2d
B=125
T=2.7y
(c.1450)
83: Bi
Bismuth
208.9806g
271.422/1564
{2 8 18 32 18 5}
2.02/rhm
Bi=1.63
Bi+3=0.96
Bi+5=0.74
[<80]
B=207
T=38y EC
B=208 5+
T=368ky EC
A=209 9/2-
100%
B=210
T=3My/5d
(c.1450)

Oxygen Family

Standard Entry:
Z=atomic number: symbol
Name of Element
atomic weight in grams/mole
melting/boiling point, oC
{electrons in shells}
electronegativity/crystal structure
Atoms & Ions=radius in Angstroms ()
[cosmic abundance/1012 Hydrogen atoms]
A/B=mass number of isotope, spin & parity
relative isotope abundance (%)
T=half life    decay mode
(date of discovery)

8: O
Oxygen
15.9994g
-218.789/
-182.97
{2 6}
3.44/mon
O-2=1.40
O=0.65
O+6=0.10
[690x106]
A=16 0+
99.756%
A=17 5/2+
0.039%
A=18 0+
0.205%
(1774)
16: S
Sulfur
32.06g
115.22/444.60
{2 8 6}
2.58/orh
S-2=1.74
S=1.09
S+4=0.37
S+6=0.30
[16x106]
A=32 0+
95.0%
A=33 3/2+
0.75%
A=34 0+
4.2%
B=35
T=87.2d
A=36 0+
0.015%
(ancient)
34: Se
Selenium
78.96g
221/685
{2 8 18 6}
2.55/hex
Se-2=1.93
Se=1.22
Se+4=0.50
Se+6=0.42
[2.7x103]
A=74 0+
0.9%
B=75
T=118.5d
A=76 0+
9.0%
A=77 1/2-
7.5%
A=78 0+
23.5%
B=79 7/2+
T=65ky
A=80 0+
50%
A=82 0+
9.0%
(1817)
52: Te
Tellurium
127.60g
449.57/988
{2 8 18 18 6}
2.1/hcp
Te-2=2.11
Te=1.42
Te+4=0.70
Te+6=0.56
[260]
A=120 0+
0.09%
B=121
T=154d IT
A=122 0+
2.4%
A=123 1/2+
0.87%
T=12Ty IT
A=124 0+
4.6%
A=125 1/2+
7.0%
A=126 0+
18.7%
B=127
T=109d IT
A=128 0+
31.8%
A=130 0+
34.5%
(1782)
84: Po
Polonium
(208.9824)
254/962
{2 8 18 32 18 6}
2.0/cub
Po=1.53
Po+6=0.67
B=208
T=2.9y
B=209 1/2-
T=102y
B=210
138.38d
(1898)

Halogens

Standard Entry:
Z=atomic number: symbol
Name of Element
atomic weight in grams/mole
melting/boiling point, oC
{electrons in shells}
electronegativity/crystal structure
Atoms & Ions=radius in Angstroms ()
[cosmic abundance/1012 Hydrogen atoms]
A/B=mass number of isotope, spin & parity
relative isotope abundance (%)
T=half life    decay mode
(date of discovery)

1: H
Hydrogen
1.008g
-259.34/ -252.88
{1}
2.20/hcp
H=0.79
H+=c.10-5
[1x1012]
A=1 1/2+
99.985%
Deuterium
A=2 1+
0.015%
Tritium
B=3 1/2+
T=12.33y
(1766)
9: F
Fluorine
18.9984g
-219.67/ -188.20
{2 7}
3.98/mon
F-=1.33
F=0.57
F+7=0.08
[36x103]
B=18
T=109.8m
A=19 1/2+
100%
(1771)
17: Cl
Chlorine
35.453g
-100.97/-34.05
{2 8 7}
3.16/tet
Cl-=1.81
Cl=0.97
Cl+5=0.34
Cl+7=0.27
[220x103]
A=35 3/2+
75.77%
B=36 2+
T=300ky
A=37 3/2+
24.23%
B=38
T=37.2m
(1774)
35: Br
Bromine
79.904g
-7.25/59.10
{2 8 18 7}
2.96/orh
Br-=1.96
Br=1.12
Br+5=0.47
Br+7=0.39
[540]
A=79 3/2-
50.69%
A=81 3/2-
49.31%
B=82
T=35.3h
(1826)
53: I
Iodine
126.9045g
113.6/185.25
{2 8 18 18 7}
2.66/orh
I-=2.20
I=1.32
I+5=0.62
I+7=0.50
[44]
A=127 5/2+
100%
B=129 7/2+
T=16My
B=131
T=8.04d
(1811)
85: At
Astatine
(209.9871)
302/337
{2 8 18 32 18 7}
2.2/--
At=1.43
At+7=0.62
B=209
T=5.4h EC
B=210 5+
T=8.1h EC
B=211
T=7.21h EC
(1940)

Inert Gases

Standard Entry:
Z=atomic number: symbol
Name of Element
atomic weight in grams/mole
melting/boiling point, oC
{electrons in shells}
electronegativity/crystal structure
Atoms & Ions=radius in Angstroms ()
[cosmic abundance/1012 Hydrogen atoms]
A/B=mass number of isotope, spin & parity
relative isotope abundance (%)
T=half life    decay mode
(date of discovery)

2: He
Helium
4.00260g
-272.38/ -268.93
{2}
--/hcp
He=0.49
[80x109]
A=3 1/2+
10-4%
A=4 0+
100%
(1868)
10: Ne
Neon
20.179g
-248.59/ -246.05
{2 8}
--/fcc
Ne=0.51
[37x106]
A=20 0+
90.5%
A=21 3/2+
0.27%
A=22 0+
9.2%
(1898)
18: Ar
Argon
39.948g
-189.35/-185.9
{2 8 8}
--/fcc
Ar=0.88
[1.0x106]
A=36 0+
0.34%
B=37
T=35.02d EC
A=38 0+
0.07%
B=39
T=265y
A=40 0+
99.59%
(1894)
36: Kr
Krypton
83.80g
-157.4/-153
{2 8 18 8}
--/fcc
Kr=1.03
[1.9x103]
A=78 0+
0.35%
A=80 0+
2.25%
B=81 7/2+
T=210ky EC
A=82 0+
11.6%
A=83 9/2+
11.5%
A=84 0+
57.0%
B=85
T=10.7y
A=86 0+
17.3%
(1898)
54: Xe
Xenon
131.30g
-111.8/-108.1
{2 8 18 18 8}
--/fcc
Xe=1.24
[214]
A=124 0+
0.10%
A=126 0+
0.09%
A=128 0+
1.9%
A=129 1/2+
26.4%
A=130 0+
3.9%
A=131 3/2+
21.2%
A=132 0+
27%
B=133
T=5.25d
A=134 0+
10.5%
B=135
T=9.1h
A=136 0+
8.9%
(1898)
86: Rn
Radon
(222.0176)
-71/-62
{2 8 18 32 18 8}
--/fcc
Rn=1.34
A=222 0+
T=3.824d
(1900)

Rare Earths

Standard Entry:
Z=atomic number: symbol
Name of Element
atomic weight in grams/mole
melting/boiling point, oC
{electrons in shells}
electronegativity/crystal structure
Atoms & Ions=radius in Angstroms ()
[cosmic abundance/1012 Hydrogen atoms]
A/B=mass number of isotope, spin & parity
relative isotope abundance (%)
T=half life    decay mode
(date of discovery)

57: La
Lanthanum
138.9055g
918/3457
{2 8 18 18 9 2}
1.10/hex
La=2.74
La+3=1.14
[66]
B=137 7/2+
T=60ky EC
A=138 5-
0.09%
T=110Gy
A=139 7/2+
99.91%
B=140
T=40.3h
(1839)
89: Ac
Actinium
(227.0278)
1051/3200
{2 8 18 32 18 9 2}
1.1/fcc
Ac+3=1.18
A=227 3/2-
T=21.772y
(1899)
58: Ce
Cerium
140.12g
798/3426
{2 8 18 20 8 2}
1.12/fcc
Ce=2.70
Ce+3=1.07
Ce+4=0.94
[76]
A=136 0+
0.19%
A=138 0+
0.26%
A=140 0+
88.5%
A=142 0+
11.1%
T=50Py
B=144
T=284d
(1803)
90: Th
Thorium
232.0381g
1755/4788
{2 8 18 32 18 10 2}
1.3/fcc
Th=1.80
Th+4=1.02
[7]
B=228
T=1.913y
B=229 5/2+
T=7340y
B=230 0+
T=77ky
A=232 0+
100%
T=14.1Gy
(1828)
59: Pr
Praseodymium
140.0977g
931/3512
{2 8 18 21 8 2}
1.13/hex
Pr=2.67
Pr+3=1.06
Pr+4=0.92
[35]
A=141 5/2+
100%
B=142
T=19.1h
(1885)
91: Pa
Protactinium
231.0359g
1572/--
{2 8 18 32 20 9 2}
1.5/bct
Pr+3=1.13
Pr+4=0.98
Pr+5=0.89
A=231 3/2
T=32.5ky
(1917)
60: Nd
Neodymium
144.24g
1021/3068
{2 8 18 22 8 2}
1.14/hex
Nd=2.64
Nd+3=1.04
[71]
A=142 0+
27.1%
A=143 7/2-
12.2%
A=144 0+
23.9%
T=2.1Py
A=145 7/2-
8.3%
A=146 0+
17.2%
B=147
T=11.1d
A=148 0+
5.7%
A=150 0+
5.6%
(1885)
92: U
Uranium
238.0508g
1132.3/3818
{2 8 18 32 21 9 2}
1.38/bcc
U=1.38
U+4=0.97
U+6=0.80
[<4]
B=232 0+
T=72y
B=233 5/2+
T=159ky
A=234 0+
0.0055%
T=244ky
A=235 7/2-
0.72%
T=710My
B=236 0+
T=24My
A=238 0+
99.28%
T=4.49Gy
(1789)
61: Pm
Promethium
(144.9127)
1042/3512
{2 8 18 23 8 2}
1.13/dcp
Pm=2.62 B=145 5/2+
T=17.7y EC
B=147 7/2+
T=2.623y
(1947)
93: Np
Neptunium
(237.0482)
639/--
{2 8 18 32 22 9 2}
1.36/orh
Np+3=1.10
Np+4=0.95
Np+7=0.71
B=236 6-
T=5000y EC
B=237 5/2+
T=2.14My
B=239
T=2.346d
(1940)
62: Sm
Samarium
150.36g
1074/1791
{2 8 18 24 8 2}
1.17/rhm
Sm=2.59
Sm+3=1.00
[63]
A=144 0+
3.1%
B=146 0+
T=100My
A=147 7/2-
15.0%
T=110Gy
A=148 0+
11.2%
T=8Py
A=149 7/2-
13.8%
T=10Py
A=150 0+
7.4%
B=151
T=93y
A=152 0+
26.7%
A=154 0+
22.8%
(1879)
94: Pu
Plutonium
(244.0642)
640/3230
{2 8 18 32 24 8 2}
1.28/mcl
Pu+3=1.08
Pu+4=0.93
B=238 0+
T=87.75y
A=239 1/2+
T=24390y
B=240 0+
T=6540y
B=242 0+
T=387ky
B=244 0+
T=83My
(1940)
63: Eu
Europium
151.96g
822/1597
{2 8 18 25 8 2}
1.2/bcc
Eu=2.56
Eu+3=0.98
[5]
A=151 5/2+
47.8%
B=152
T=13y EC
A=153 5/2+
52.2%
B=154
T=8.5y
(1896)
95: Am
Americium
(243.0614)
1176/2607
{2 8 18 32 25 8 2}
1.3/hcp
Am+3=1.07
Am+4=0.92
B=241 5/2-
T=433y
B=243 5/2-
T=7370y
(1944)
64: Gd
Gadolinium
157.25g
1313/3266
{2 8 18 25 9 2}
1.20/hcp
Gd=2.54
Gd+3=0.97
[13]
B=150 0+
T=1.8My
A=152 0+
0.20%
T=110Ty
A=154 0+
2.2%
A=155 3/2-
14.9%
A=156 0+
20.6%
A=157 3/2-
15.7%
A=158 0+
24.7%
A=160 0+
21.7%
(1880)
96: Cm
Curium
(247.0703)
1345/--
{2 8 18 32 25 9 2}
1.3/dcp
B=242
T=163.2d
B=244
T=18.12y
B=245 7/2+
T=8700y
B=246 0+
T=4650y
B=247 9/2-
T=15.4My
B=248 0+
T=340ky SF
B=250 0+
T=11ky
(1944)
65: Tb
Terbium
158.9254g
1356/3223
{2 8 18 27 8 2}
1.2/hcp
Tb=2.51
Tb+3=0.93
Tb+4=0.81
[2]
B=158
T=1.2ky EC
A=159 3/2+
100%
B=160
T=72.3d
(1843)
97: Bk
Berkelium
(247.0703
1050/--
{2 8 18 32 27 8 2}
1.3/dcp
B=247 3/2-
T=1400y
B=248 8-
T=9y
(1949)
66: Dy
Dysprosium
162.50g
1412/2562
{2 8 18 28 8 2}
1.22/hcp
Dy=2.49
Dy+3=0.92
[13]
A=156 0+
0.06%
T=200Ty
A=158 0+
0.10%
A=160 0+
2.3%
A=161 5/2+
18.9%
A=162 0+
25.5%
A=163 5/2-
24.9%
A=164 0+
28.2%
(1886)
98: Cf
Californium
(242.0587)
900/--
{2 8 18 32 28 8 2}
1.3/--
B=249 9/2-
T=352y
B=251 1/2+
T=900y
(1950)
67: Ho
Holmium
164.9303g
1474/2695
{2 8 18 29 8 2}
1.23/hcp
Ho=2.47
Ho+3=0.91
[3]
A=165 7/2-
100%
B=166
T=1.2ky
(1879)
99: Es
Einsteinium
(252.083)
860/--
{2 8 18 32 29 8 2}
1.3/--
B=252
T472d
B=253
T=20.47d
B=254 7+
T=276d
(1952)
68: Er
Erbium
167.26g
1529/2863
{2 8 18 30 8 2}
1.24/hcp
Er=2.45
Er+3=0.89
[7]
A=162 0+
0.14%
A=164 0+
1.6%
A=166 0+
33.4%
A=167 7/2+
22.9%
A=168 0+
27.0%
A=170 0+
15.0%
(1843)
100: Fm
Fermium
(257.0951)
(1527)/--
{2 8 18 32 30 8 2}
1.3/--
B=253 1/2+
T=3.0d
B=255
T=20.1h
B=257 9/2+
T=82d
(1953)
69: Tm
Thulium
168.9342g
1545/1947
{2 8 18 31 8 2}
1.25/hcp
Tm=2.42
Tm+3=0.87
[4]
A=169 1/2+
100%
B=170
T=128.6d
B=171
T=1.92y
(1879)
101: Md
Mendelevium
(258.10)
(827)/--
{2 8 18 32 31 8 2}
1.3/--
B=256 0-
T=77m
B=258
T=55d
(1955)
70: Yb
Ytterbium
173.04g
819/1194
{2 8 18 32 8 2}
1.1/fcc
Yb=2.40
Yb+3=0.86
[6]
A=168 0+
0.14%
B=169
T=32d EC
A=170 0+
3.0%
A=171 1/2-
14.3%
A=172 0+
21.9%
A=173 5/2-
16.2%
A=174 0+
31.8%
B=175
T=4.19d
A=176 0+
12.7%
(1907)
102: No
Nobelium
(259.1009)
(827)/--
{2 8 18 32 32 8 2}
1.3/--
B=253 9/2-
T=1.6m
B=255 1/2+
T=3.2m
B=259
T=58m
(1958)

The Sub-Atomic Zoo

Philosophy of Science, Physics

Philosophy of Science

Home Page

Copyright (c) 1998, 2001, 2003, 2004, 2009, 2012 Kelley L. Ross, Ph.D. All Rights Reserved

The Periodic Table of the Elements, Note 1

Z is the number of protons, p, in the nucleus of an atom.

Hit "Back" button to return to text.


The Periodic Table of the Elements, Note 2


Electronegativity is the power of an atom to capture and hold electrons. High electronegativity, like Fluorine at 3.98, means great power to capture an electron. Low electronegativity, like Potassium at 0.82, reflects a tendency to give up an electron. If electronegativity is very large or very small, atoms will tend to form ions. A strongly ionic bond will form between two atoms with a large difference in electronegativity. If the difference in electronegativity between different atoms is small, covalent bonding will result. The degree of ionic bonding is indicated in the following table:

difference in electronegativity
0.10.20.30.40.50.60.70.80.91.01.11.21.31.4
.5% 1% 2% 4% 6% 9%12%15%19%22%26%30%34%39%
percentage ionic bond character

difference in electronegativity
1.51.61.71.81.92.02.12.22.32.42.52.62.7
43%47%51%55%59%63%67%70%74%76%79%82%84%
percentage ionic bond character

difference in electronegativity
2.82.93.03.13.2
86%88%89%91%92%
percentage ionic bond character

Hit "Back" button to return to text.


The Periodic Table of the Elements, Note 3


Atoms pack into regular structures called "crystals." Crystal arrangements can be described geometrically as versions of various "space lattices." This is a facinating area of science where chemistry and geometry meet, calling Plato's geometric theory of the four elements. More basic lattices occur in general minerology. These are the forms cited for cyrstals of the pure elements. The codes used in the table are the bold three letter abbreviations.

Crystal Structure

Hit "Back" button to return to text.


The Periodic Table of the Elements, Note 4

Mass number A is given for natural isotopes.

Mass number B (= Baryon number) is given for short lived or artificial isotopes.

Hit "Back" button to return to text.


The Periodic Table of the Elements, Note 5

, alpha particle emission
, beta particle
, positron
EC, electron capture
IT, transition between isomeric energy states
SF, spontaneous fission

Hit "Back" button to return to text.


The Periodic Table of the Elements, Note 6

As an element, "neutronium," neutrons only exist free in neutron stars. Otherwise they decay into, an electron (e-), a proton (p+)--a Hydrogen atom--and an anti-neutrino ().

Return to text


The Periodic Table of the Elements, Note 7

The size of atoms and ions is an important element in both crystal structure and chemistry. Atoms or ions of the same size pack hexgonally, with either hexagonal or cubic close packing. When some atoms or ions are smaller than others, they may be surrounded by the larger atoms. As they get smaller, fewer surrounding atoms can come into contact with them. The "coordination" number thus gets smaller, and the geometrical shape of the arranged atoms changes.

One consquence of such differences in size can be seen in the system of the mineral feldspar, the most common mineral in the crust of the earth and the moon. Feldspar is basically quartz (SiO2) where some Silicon atoms are replaced by Aluminum atoms. Since Aluminum ions will only have a +3 charge instead of the +4 charge of Silicon ions, the -2 Oxygen ions will result in a net surplus negative charge. This then atrracts positively charged ions. In Feldspar, these will be Potassium, Sodium, or Calcium. Since Potassium and Sodium are chemically similar and tend to form singly charged ions (K+ & Na+), while Calcium is chemically somewhat different and forms doubly charged ions (Ca+2), we might expect Potassium and Sodium feldspars to be chemically different from Calcium feldspar. However, this is not the case. Potassium feldspar (KAlSi3O8) is relatively distinct as Orthoclase, while Sodium (NaAlSi3O8) and Calcium (CaAl2Si2O8) feldspars form the Plagioclase Series, where a smooth transition occurs from pure sodium to pure calcium, with similar cyrstal structure. The key to this peculiarity is the size of the ions. The Potassium ion is very large, at 1.33 Angstroms, while the Sodium and Calcium ions are not only smaller, but of similar size, 0.93 and 0.99 Angstroms, respectively. With the O-2 ion (dominant in the silicates like quartz and feldspar) at 1.40 Angstroms, Potassium ions will form cubic (8x) coordination, but Sodium and Calcium ions will form octohedral (6x) coordination. Silicon +4 ions themselves are only 0.39 Angstroms, and Aluminum +3 ions 0.51 Angstroms, both of which make for tetrahedral (4x) coordination with Oxygen.

The coordination of atom and ion sizes is thus another element in the geometry of chemistry and minerology.

Hit "Back" button to return to text.